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@ Observation of the acoustic wave field at large distances
@ The acoustic wave equation in the high-frequency regime
@ The Wigner transform

© Transport equation in a slowly-fluctuating medium

© Radiative Transfer equation in rapidly-fluctuating medium

@ Diffusion equation at long times

© Extension : elasticity and anisotropy
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The scaling regimes

1

L
n X A
High

Frequency

Low

Frequency

R. Cottereau (CNRS)

Ecole d'été de Mécanique Théorique

DA



Wave propagation over large distances in a heterogeneous medium
65 X 65 X 33 1‘3, 5 x 10° elements, 20 CPU days on 156 processors (on SGI machine with 800 Intel Xeon X5650 cores)
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High-frequency regime (/. ~ A < L, 0 < 1)
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(a) Snapshot of displacement field (b) Energy density computed from wave equation and diffusion *

o Displacement field u(x, t) is not stable between two realizations

@ Consideration of energy densities (in phase space x X k) : Wigner transform of u(x, t)

1. L. MARGERIN. “Attenuation, transport and diffusion of scalar waves in textured random media”. In : Tectonophys. 416.1-4 (2006), p. 229-244. DOI :
10.1016/j.tecto.2005.11.011
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A first attempt at measuring an "energy’ 2
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FIGURE — Oscillatjng function uc(x) (thin line), mean function u(x) (thick line), and square-root limit
(u(x)? + 2a(x)*)2 (thick dashed line)

Consider a real function x — wue(x) oscillating with amplitude a(x) about its mean u(x) :
ue(x) = u(x) + a(x) sin ol , 0<ex 1
€

has no strong limit when € — 0, although the functions a and u vary slowly. However for any
smooth function ¢ with compact support on R3 :

im, [ 900 (e o = [ 66) ()2 + S0 ) o

e—0
2. 1. BAYDOUN et al. “Kinetic modeling of multiple scattering of elastic waves in heterogeneous anisotropic media”. In : Wave Motion 51.8 (2014),
p. 1325-1348. DOI : 10.1016/j.wavenoti.2014.08.001
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The Wigner measure in 1D

o The objective is to define a quadratic quantity rescaled to observe around a certain (high)

Wil k) = tim o [ eu(x= L) u (e L)y

frequency

T 2

o Examples

> Constant function : u(x) = up
W(u] = §(0)

> Fluctuating function around frequency O(1) : u(x) = exp(igx)
W(u] = é(eq) —e—0 6(0)
> Fluctuating function around frequency O(1/€) : u(x) = exp(igx/e)
W(u] = 4(q)
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The Wigner measure as high-frequency energy density

The Wigner measure

o Wigner transform

o Wigner measure Wlu.] = W[ue, uc] is the limit (high-frequency) energy of (ue). It is
positive in the limit.

o Equivalent definition

; K\ _ _[(p k\
W [u, v](x, k) :/ eP*iy (E + ,) Qv (E _ ,) dp,
R3 2 € 2 €

Among other quadratic quantltles the hlgh frequency strain energy Ec(t) := 3 fD CVuc : Vuc dx
and kinetic energy Te(t) == 5 fD p|O¢uc|? dx can be retrieved from

lim £.(t) = - /DXR3 p(X)T(x, k) : Wue(-, )](dx, dk),

e—0 2

lim Te(t) = %/Mes p(x)Te Wedruc (-, t)](dx, dk).
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Acoustic wave equation in a homogeneous medium

The acoustic wave equation in a homogeneous medium can be written

ou
P~ +Vp

= 0
ot
10
fip_'_v.u = 0
K Ot

The non-vanishing solutions of the dispersion matrix verify

w4 = tclk|

with modes 1 (t, z, k) = +/5/2(u(t, z) - k) + 1/1/2Kp(t, z). The (unscaled) Wigner transform
of these modes verify a transport equation
8a+

E+EIA(~V3+:O
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Acoustic wave equation in a slowly-fluctuating medium

The acoustic wave equation in a slowly-fluctuating medium can be written

ou

Z4vVp = 0
p(X)at-l- p
1 0p

Livo = 0
Kot Y

where we assume that the frequency is w/c and c?(x) = K(x)/p(x).
The non-vanishing solutions of the dispersion matrix verify

w+ = tc(x)|k|

with modes i (t, x, z, k) = \/p(x)/2(u(t, z) - k) £ \/1/2K(x)p(t, z). In the high-frequency limit

(e — 0) the Wigner transform of the mode verifies a transport (Liouville) equation

Io) ~
% +e(x)k - Vay — [k|Ve(x) - Vgay =0

where k = k/|k| and

ay(t,x, k) = (2717)3 /R3 ekyf (t,x,x— %,k)?(t,x,x+ %,k) dy,

We follow here the lines of 3.

3. L. RyzHik, G. PapaNICOLAOU et J. B. KELLER. “Transport equations for elastic and other waves in random media”. In : Wave Motion 24 (1996),
p. 327-370. DOI : 10.1016/S0165-2125(96)00021-2
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Sketch of the proof

@ Rewrite the system in a condensed form :
0 [u 0 [u
A(x)— D;— =Lqg=0
)5 [p] * 7 dx; M 9

where A(x) = diag[p(x) p(x) p(x) 1/K(x)], D; = 2e; ®s e4, and the dispersion matrix
M(x, k) = A"1(x)k;D; is

0 0 0 ki/p(x)

| oo 0 0 fa/p(x)
Lokl =1 0 0 ke/p(x)
le(X) kgK(X) k3K(X) 0

whose non-vanishing eigenvalues and eigenvectors are w4 = +c(x)|k|, and

b k) = [ s, /)
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Sketch of the proof — 2

O Estimate W [Lq,.,q.] =0 and W [q.,Lq.] =0
@ Expanding the above equations in € yields

OW,
ot

1
+(Q) +eQr + )W, + ;(QS +eQ+ . )W =0

where

1 i € €
We(tyx7k) = (271')3 \/]R;?’ elk‘ylle (tyx - ?y;k) U75<tyx+ ?y7 k) dy,

© Expand the Wigner matrix in series W, = WO 4+ ew® 4
@ The limit Wigner matrix must verify Qg W =0, which means it should be projected on the
modes of L(x, k).
© The next term should verify
aow(0)

odw® = 5 — (99 + 9w

@ Projection on the modes and a solvability argument on the right hand side of the above
equation yield the result.
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Acoustic wave equation in a slowly-fluctuating medium

The acoustic wave equation in a slowly-fluctuating medium can be written

8 8
A(x) 5 m +D,-8—Xj [g] =Lqg=0

where we assume that the frequency is w/e.
We consider properties that are such that

[ 9 L)

where v,(x) and vk(x) are zero-mean stationary random fields with mean-zero and covariance
functions

Roo(2) = E[vp(y)voly +2)], Rok(2) =Ep(y)vk(y +2)],  Rx(2) =E[vk(y)vk(y +2)].
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Radiative Transfer Equation

In the weak scattering limit (e — 0), the Wigner transform of the mode of the background
verifies a radiative transfer equation

1o} A
£ + c(x)k - Va— |k|Ve(x) - Via= / (a(k’) — a(k))o(k, k')dk’
R3
where the differential scattering cross-section is

we(x)?|k|?
(;| | (

ok, k') = (k- K')2R,,(k — k') + 2(k - K )R, (k — k') + Ry (k — k'))

3(c(x)[k| = c(x)[K])
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Radiative Transfer Equation

In the weak scattering limit (e — 0), the Wigner transform of the mode of the background
verifies a radiative transfer equation

0 A
£ + c(x)k - Va— |k|Ve(x) - Via= / (a(k’) — a(k))o(k, k')dk’
R3
where the differential scattering cross-section is

ot k) = TOTIRE (ke R)2R (k) + 20k - KRk — k) + Ree(k — k)
5(c(x)lk| - c()IK'])

@ Sketch of proof

> Multiscale expansion as before ...

> Ensemble averages are considered at each order.

> The e~ ! indicates to project the Wigner measure on the modes of the background dispersion
>

A "mixing" condition is introduced.
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The diffusion equation at long times

We consider for simplicity a homogeneous background c(x) = €. We consider a different scaling
of space and time in the radiative transfer equation : x — x/¢, t — t/e2. At long times, the
radiative transfer equation reduces to the diffusion equation for an isotropic energy density

%a(tx, |kl) =V - (D(lk)Va(t, x, |k]))

where the diffusion coefficient is
—2

C
PUKD = Sy — kD)

Z(|k|):/R3 ok, K'Yk, )\(\k|):27r/|k‘:‘k,|(k-k)o(k,k’)dk’
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The diffusion equation at long times — Sketch of proof

o Multiscale expansion in the radiative transfer equation with the new scaling ...

) R
eza(ao +..) +eck - V(ag+ear +...)

- /RS((ao(k’) +ear (k') + Eay(k') + ...) — (ao(k) + car (k) + 2ap(k) + ...))o(k, k') dk’'

Spectral theory indicates that the first order should become isotropic.
ao(t,X, k) = ao(t, X, ‘kl)

o Next order yields

&

—mk - Vao(t, x, | k|)

al(t7x7 k) =

@ Integration over k at the last order yields the diffusion equation for ag
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The radiative transfer for isotropic elastic waves

Radiative Transfer Equation

Projection of energy density on background modes
O:W(x, k, t) + {w(x, k), W(x, k, t)} = /cr(x, k, K" W(x, k', t)dk’ — X (x, k)W(x, k, t)

for modal energy density matrix W in x x k of w-modes of TU = p~1 (C: U ® k) k.

For isotropic homogeneous backgrounds

Projection of energy density on P and S modes

atWP-i-CPVXWP:/O'Pprdk/—l—/O'SPWsdk/—(pr-{-Zps)Wp

9:Ws + csVxWs = /UPSWPdk' + /GssWsdk' — (Zsp + Xss)Ws

o Equipartition is predicted by diffusion in elastic media

@ The fully anisotropic case can be treated 4

4. 1. BAYDOUN et al. “Kinetic modeling of multiple scattering of elastic waves in heterogeneous anisotropic media”. In : Wave Motion 51.8 (2014),
p. 1325-1348. oI : 10.1016/j.wavemoti.2014.08.001
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Closing in on the observations : what has dynamic homogenization brought

The coherent pulses

@ Seem deterministic with an amplitude strongly dependent on distance to source L
@ Have strong directionality/anisotropy features
@ Are not sensitive to the particular realization of heterogeneity

o Are stronger (relatively to coda) when weak heterogeneities fluctuate faster than wavelength
A>/lcand o K 1

v
The coda
@ Seems random with an amplitude independent (at late times) on L
@ Seems to propagate isotropically
@ |s sensitive to the particular realization of heterogeneity
o Is stronger when A = ¢c and o = 1 )

o Homogenized models should be able to reproduce these features, random and deterministic
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