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The scaling regimes
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Wave propagation over large distances in a heterogeneous medium
65× 65× 33 `3

c , 5× 105 elements, 20 CPU days on 156 processors (on SGI machine with 800 Intel Xeon X5650 cores)
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High-frequency regime (`c ≈ λ� L, σ � 1)

(a) Snapshot of displacement field

High-frequency homogenization
`c ⇡ � << L, weak heterogeneity

Radiative Transfer Equation [Ryzhik et al., 1996 ; Margerin, 2005 ; Baydoun et al., 2014]

Projection of energy density on background modes

d⌧W (x , k, t) + {!(x , k),W (x , k, t)} =

Z
�(x , k, k 0)W (x , k 0, t)dk 0 � ⌃(x , k)W (x , k, t)

for modal energy density matrix W in x ⇥ k (Wigner transform of u(x, t)) of !-modes of
�U = ⇢�1 (C : U ⌦ k) k.

Di↵usion regime : `sc << L [Aki, 1969 ; Weaver, 1990 ; Ryzhik et al., 1996]

Modal energy densities decouple and equipartition is verified

@tw(x , |k|, t) = r · D(|k|)rw(x , |k|, t)

the results obtained for flat object with k0a=2 and
k0c=0.6, with all other parameters unchanged. In this
case, one obtains the following diffusion constants:
D|| =37.3 km2/s, D⊥=10.9 km2/s with 7% rms, and
D|| =149.1, D⊥=43.6 km2/s with 3.5% rms. This shows
that the energy will be preferentially transported along
the direction of flattening of the scatterers. Apart from
this difference, the essential features are similar to
Fig. 5.

7. Application to a waveguide

For the moment, we have considered the propagation
of energy in infinite space. This is not very satisfying

since there are major velocity discontinuities inside the
earth that cause the reflection of the seismic energy.
Below we develop a simple model for the propagation in
the lithosphere, as illustrated in Fig. 7. We assume that
the lithosphere is composed of a random heterogeneous
and anisotropic crust overlying a homogeneous mantle.
Such a model has already been shown by Margerin et al.
(1999), Hoshiba et al. (2001), Lacombe et al. (2003) to
successfully predict the coda decay of regional earth-
quakes. We further assume that the free surface is
perpendicular to the symmetry axis of the anisotropic
scatterers as depicted in Fig. 7, i.e. the scatterers are
either stretched perpendicular to the surface or flattened
parallel to the surface. Taking the ẑ axis perpendicular to
the surface, and an arbitrary set (x̂ , ŷ) of orthogonal
vectors parallel to the surface diagonalizes the diffusion
tensor. We call D|| and D⊥ the eigenvalues of the
diffusion tensor parallel and perpendicular to the free
surface, respectively. Our model also includes a step
increase of wavespeed at the Moho. We assume that the
eigenvalues of the transport mean free path tensor are
smaller than the crustal thickness. In this regime, the
diffusion approximation should apply (Margerin et al.,
1998) but must be supplemented with boundary
conditions. They can be obtained by writing down a
detailed balance of energy on an infinitesimal portion of
interface. The presence of statistical anisotropy does not
yield any new difficulties, and we refer the reader to the
literature (Zhu et al., 1991; Margerin et al., 1998) for
further details of this procedure. Writing down an
energy balance at the free surface and at the Moho, one
obtains the following boundary conditions, respectively:

AEðt;RÞ
Az

¼ 0 at z ¼ 0 ð44Þ

Eðt;RÞ þ 2c−10 gD8
AEðt;RÞ

Az
¼ 0; at z ¼ H ð45Þ

where γ is a function of the reflection coefficient at the
Moho at depth H. The zero flux condition at the surface
expresses the total reflection of energy, while the
boundary condition at the Moho describes the partial
trapping of energy in the crust. The factor γ is related to
the usual energy reflection coefficient R at the Moho as
follows (Zhu et al., 1991; Margerin et al., 1998):

g ¼
1þ 3

Z 1

0
RðlÞl2dl

1−2
Z 1

0
RðlÞldl

; ð46Þ

where μ denotes the cosine of the incidence angle. Since
the scattering mean free path in the mantle is assumed to

Fig. 6. Energy density as a function time (in seconds) in a Gaussian
anisomeric random medium with k0a=2.0 and k0c=0.6. The point
source has unit energy. The location of the receivers is indicated next to
each curve. The heavy lines correspond to analytical solutions of the
diffusion equation, while the wiggly lines show the results of the
Monte Carlo simulations. Top: weak scattering regime (rms velocity
fluctuations 3.5%). Bottom: strong scattering regime (rms velocity
fluctuations 7%).

240 L. Margerin / Tectonophysics 416 (2006) 229–244

Mapping from (VP (x), VS (x)) to (�(x , k, k 0),⌃(x , k), D(|k|))
is explicit
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(b) Energy density computed from wave equation and diffusion 1

Displacement field u(x, t) is not stable between two realizations

Consideration of energy densities (in phase space x× k) : Wigner transform of u(x, t)

1. L. Margerin. “Attenuation, transport and diffusion of scalar waves in textured random media”. In : Tectonophys. 416.1-4 (2006), p. 229-244. doi :
10.1016/j.tecto.2005.11.011
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A first attempt at measuring an ”energy” 2
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Figure – Oscillating function uε(x) (thin line), mean function u(x) (thick line), and square-root limit
(u(x)2 + 1

2 a(x)2)
1
2 (thick dashed line)

Consider a real function x → uε(x) oscillating with amplitude a(x) about its mean u(x) :

uε(x) = u(x) + a(x) sin
x

ε
, 0 < ε� 1.

has no strong limit when ε→ 0, although the functions a and u vary slowly. However for any
smooth function φ with compact support on R3 :

lim
ε→0

∫

R3
φ(x) (uε(x))2 dx =

∫

R3
φ(x)

(
(u(x))2 +

1

2
(a(x))2

)
dx .

2. I. Baydoun et al. “Kinetic modeling of multiple scattering of elastic waves in heterogeneous anisotropic media”. In : Wave Motion 51.8 (2014),
p. 1325-1348. doi : 10.1016/j.wavemoti.2014.08.001
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The Wigner measure in 1D

The objective is to define a quadratic quantity rescaled to observe around a certain (high)
frequency

W [u](x , k) = lim
ε→0

1

2π

∫

R
e ikyu

(
x − εy

2

)
u
(
x +

εy

2

)
dy

Examples
I Constant function : u(x) = u0

W [u] = δ(0)

I Fluctuating function around frequency O(1) : u(x) = exp(iqx)

W [u] = δ(εq) →ε→0 δ(0)

I Fluctuating function around frequency O(1/ε) : u(x) = exp(iqx/ε)

W [u] = δ(q)
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The Wigner measure as high-frequency energy density

The Wigner measure

Wigner transform

W ε[u, v ](x , k) =
1

(2π)3

∫

R3
e ik·yu

(
x − εy

2

)
⊗ v

(
x +

εy
2

)
dy ,

Wigner measure W [uε] = W ε[uε, uε] is the limit (high-frequency) energy of (uε). It is
positive in the limit.

Equivalent definition

W ε[u, v ](x , k) =

∫

R3
e ip·x û

(
p
2

+
k
ε

)
⊗ v̂

(
p
2
− k
ε

)
dp,

Among other quadratic quantities, the high-frequency strain energy Eε(t) := 1
2

∫
D C∇uε : ∇uε dx

and kinetic energy Tε(t) := 1
2

∫
D ρ|∂tuε|2 dx can be retrieved from

lim
ε→0
Eε(t) =

1

2

∫

D×R3
ρ(x)Γ(x , k) : W [uε(·, t)](dx , dk) ,

lim
ε→0
Tε(t) =

1

2

∫

D×R3
ρ(x)TrW [ε∂tuε(·, t)](dx , dk) .
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Acoustic wave equation in a homogeneous medium

The acoustic wave equation in a homogeneous medium can be written

ρ
∂u
∂t

+∇p = 0

1

K

∂p

∂t
+∇ · u = 0.

The non-vanishing solutions of the dispersion matrix verify

ω± = ±c|k|

with modes f±(t, z , k) =
√
ρ/2(u(t, z) · k̂)±

√
1/2Kp(t, z). The (unscaled) Wigner transform

of these modes verify a transport equation

∂a+

∂t
+ c k̂ · ∇a+ = 0
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Acoustic wave equation in a slowly-fluctuating medium

The acoustic wave equation in a slowly-fluctuating medium can be written

ρ(x)
∂u
∂t

+∇p = 0

1

K(x)

∂p

∂t
+∇ · u = 0

where we assume that the frequency is ω/ε and c2(x) = K(x)/ρ(x).
The non-vanishing solutions of the dispersion matrix verify

ω± = ±c(x)|k|

with modes f±(t, x , z , k) =
√
ρ(x)/2(u(t, z) · k̂)±

√
1/2K(x)p(t, z). In the high-frequency limit

(ε→ 0) the Wigner transform of the mode verifies a transport (Liouville) equation

∂a+

∂t
+ c(x)k̂ · ∇a+ − |k|∇c(x) · ∇ka+ = 0

where k̂ = k/|k| and

a+(t, x , k) =
1

(2π)3

∫

R3
e ik·y f

(
t, x , x − y

2
, k
)
f
(
t, x , x +

y
2
, k
)
dy ,

We follow here the lines of 3.

3. L. Ryzhik, G. Papanicolaou et J. B. Keller. “Transport equations for elastic and other waves in random media”. In : Wave Motion 24 (1996),
p. 327-370. doi : 10.1016/S0165-2125(96)00021-2
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Sketch of the proof

1 Rewrite the system in a condensed form :

A(x)
∂

∂t

[
u
p

]
+ Dj

∂

∂xj

[
u
p

]
= Lq = 0

where A(x) = diag[ρ(x) ρ(x) ρ(x) 1/K(x)], Dj = 2e j ⊗S e4, and the dispersion matrix
Γ(x , k) = A−1(x)kjDj is

L(x , k) =




0 0 0 k1/ρ(x)
0 0 0 k2/ρ(x)
0 0 0 k3/ρ(x)

k1K(x) k2K(x) k3K(x) 0




whose non-vanishing eigenvalues and eigenvectors are ω± = ±c(x)|k|, and

b±(x , k) = [ k̂√
2ρ(x)

, ±
√

K(x)
2

].
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Sketch of the proof – 2

1 Estimate W ε[Lqε, qε] = 0 and W ε[qε,Lqε] = 0

2 Expanding the above equations in ε yields

∂Wε

∂t
+ (Q0

1 + εQ1
1 + ...)Wε +

1

ε
(Q0

2 + εQ1
2 + ...)Wε = 0

where

Wε(t, x , k) =
1

(2π)3

∫

R3
e ik·yuε

(
t, x − εy

2
, k
)

uε
(
t, x +

εy
2
, k
)
dy ,

3 Expand the Wigner matrix in series Wε = W (0) + εW (1) + ...

4 The limit Wigner matrix must verify Q0
2W

(0) = 0, which means it should be projected on the
modes of L(x , k).

5 The next term should verify

Q0
2W

(1) = −∂W
(0)

∂t
− (Q0

1 +Q1
2)W (0)

6 Projection on the modes and a solvability argument on the right hand side of the above
equation yield the result.
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Acoustic wave equation in a slowly-fluctuating medium

The acoustic wave equation in a slowly-fluctuating medium can be written

A(x)
∂

∂t

[
u
p

]
+ Dj

∂

∂xj

[
u
p

]
= Lq = 0

where we assume that the frequency is ω/ε.
We consider properties that are such that

A(x) =

[
ρI3 0

0 1/K

]([
I3 0
0 1

]
+
√
ε

[
νρ
( x
ε

)
I3 0

0 νK
( x
ε

)
])

where νρ(x) and νK (x) are zero-mean stationary random fields with mean-zero and covariance
functions

Rρρ(z) = E [νρ(y)νρ(y + z)] , RρK (z) = E [νρ(y)νK (y + z)] , RKK (z) = E [νK (y)νK (y + z)] .
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Radiative Transfer Equation

In the weak scattering limit (ε→ 0), the Wigner transform of the mode of the background
verifies a radiative transfer equation

∂a

∂t
+ c(x)k̂ · ∇a− |k|∇c(x) · ∇ka =

∫

R3
(a(k ′)− a(k))σ(k, k ′)dk ′

where the differential scattering cross-section is

σ(k, k ′) =
πc(x)2|k|2

2

(
(k̂ · k̂ ′)2R̂ρρ(k − k ′) + 2(k̂ · k̂ ′)R̂ρK (k − k ′) + R̂KK (k − k ′)

)

δ(c(x)|k| − c(x)|k ′|)

Sketch of proof
I Multiscale expansion as before ...
I Ensemble averages are considered at each order.
I The ε−1 indicates to project the Wigner measure on the modes of the background dispersion
I A ”mixing” condition is introduced.
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The diffusion equation at long times

We consider for simplicity a homogeneous background c(x) = c. We consider a different scaling
of space and time in the radiative transfer equation : x → x/ε, t → t/ε2. At long times, the
radiative transfer equation reduces to the diffusion equation for an isotropic energy density

∂

∂t
a(t, x , |k|) = ∇ · (D(|k|)∇a(t, x , |k|))

where the diffusion coefficient is

D(|k|) =
c2

3(Σ(|k|)− λ(|k|))

and

Σ(|k|) =

∫

R3
σ(k, k ′)dk ′, λ(|k|) = 2π

∫

|k|=|k′|
(k̂ · k̂ ′)σ(k, k ′)dk ′
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The diffusion equation at long times – Sketch of proof

Multiscale expansion in the radiative transfer equation with the new scaling ...

ε2 ∂

∂t
(a0 + ...) + εc k̂ · ∇(a0 + εa1 + ...)

=

∫

R3
((a0(k ′) + εa1(k ′) + ε2a2(k ′) + ...)− (a0(k) + εa1(k) + ε2a2(k) + ...))σ(k, k ′)dk ′

Spectral theory indicates that the first order should become isotropic.

a0(t, x , k) = a0(t, x , |k|)

Next order yields

a1(t, x , k) = − c

Σ(|k|)− λ(|k|) k̂ · ∇a0(t, x , |k|)

Integration over k̂ at the last order yields the diffusion equation for a0
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The radiative transfer for isotropic elastic waves

Radiative Transfer Equation

Projection of energy density on background modes

∂tW(x , k, t) + {ω(x , k),W(x , k, t)} =

∫
σ(x , k, k ′)W(x , k ′, t)dk ′ − Σ(x , k)W(x , k, t)

for modal energy density matrix W in x × k of ω-modes of ΓU = ρ−1 (C : U ⊗ k) k.

For isotropic homogeneous backgrounds

Projection of energy density on P and S modes

∂twP + cP∇xwP =

∫
σPPwPdk ′ +

∫
σSPWSdk ′ − (ΣPP + ΣPS )wP

∂tWS + cS∇xWS =

∫
σPSwPdk ′ +

∫
σSSWSdk ′ − (ΣSP + ΣSS )WS

Equipartition is predicted by diffusion in elastic media

The fully anisotropic case can be treated 4

4. I. Baydoun et al. “Kinetic modeling of multiple scattering of elastic waves in heterogeneous anisotropic media”. In : Wave Motion 51.8 (2014),
p. 1325-1348. doi : 10.1016/j.wavemoti.2014.08.001
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Closing in on the observations : what has dynamic homogenization brought
...

The coherent pulses

Seem deterministic with an amplitude strongly dependent on distance to source L

Have strong directionality/anisotropy features

Are not sensitive to the particular realization of heterogeneity

Are stronger (relatively to coda) when weak heterogeneities fluctuate faster than wavelength
λ� `c and σ � 1

The coda

Seems random with an amplitude independent (at late times) on L

Seems to propagate isotropically

Is sensitive to the particular realization of heterogeneity

Is stronger when λ ≈ `c and σ ≈ 1

Homogenized models should be able to reproduce these features, random and deterministic
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